Flood Model#

import numpy as np
import matplotlib.pyplot as plt
import uqtestfuns as uqtf

The flood model is an eight-dimensional scalar valued function. The model was used in the context of sensitivity analysis in [IL15, LIPG13] and has become a canonical example of the OpenTURNS package [BDIP17].

Test function instance#

To create a default instance of the flood model:

my_testfun = uqtf.Flood()

Check if it has been correctly instantiated:

print(my_testfun)
Name              : Flood
Spatial dimension : 8
Description       : Flood model from Iooss and Lemaître (2015)

Description#

The flood model computes the maximum annual underflow of a river using the following analytical formula:

\[\begin{split} \begin{align} \mathcal{M}(\boldsymbol{x}) & = z_v + h - h_d - c_b\\ h & = \left[ \frac{q}{b k_s \left(\frac{z_m - z_v}{l} \right)^{0.5}} \right]^{0.6} \end{align} \end{split}\]

where \(\boldsymbol{x} = \{ q, k_s, z_v, z_m, h_d, c_b, l, b \}\) is the eight-dimensional vector of input variables further defined below. The output is given in \([\mathrm{m}]\). A negative value indicates that an overflow (flooding) occurs.

Note

Compared to the original function, this implementation inverted the sign of the output such that underflowing has a positive sign.

The model is based on a simplification of the one-dimensional hydro-dynamical equations of St. Venant under the assumption of uniform and constant flow rate and a large rectangular section.

Probabilistic input#

Based on [IL15] (Table 4), the probabilistic input model for the flood model consists of eight independent random variables with marginals shown in the table below.

my_testfun.prob_input

Name: Flood-Iooss2015

Spatial Dimension: 8

Description: Probabilistic input model for the Flood model from Iooss and Lemaître (2015).

Marginals:

No. Name Distribution Parameters Description
1 Q trunc-gumbel [1013. 558. 500. 3000.]Maximum annual flow rate [m^3/s]
2 Ks trunc-normal [30. 8. 15. inf] Strickler coefficient [m^(1/3)/s]
3 Zv triangular [49. 51. 50.] River downstream level [m]
4 Zm triangular [54. 56. 55.] River upstream level [m]
5 Hd uniform [7. 9.] Dyke height [m]
6 Cb triangular [55. 56. 55.5] Bank level [m]
7 L triangular [4990. 5010. 5000.] Length of the river stretch [m]
8 B triangular [295. 305. 300.] River width [m]

Copulas: None

Reference results#

This section provides several reference results of typical UQ analyses involving the test function.

Sample histogram#

Shown below is the histogram of the output based on \(100'000\) random points:

np.random.seed(42)
xx_test = my_testfun.prob_input.get_sample(100000)
yy_test = my_testfun(xx_test)

plt.hist(yy_test, bins="auto", color="#8da0cb");
plt.grid();
plt.ylabel("Counts [-]");
plt.xlabel("$\mathcal{M}(\mathbf{X})$");
plt.gcf().set_dpi(150);
../_images/flood_9_0.png

Moments estimation#

Shown below is the convergence of a direct Monte-Carlo estimation of the output mean and variance with increasing sample sizes.

# --- Compute the mean and variance estimate
np.random.seed(42)
sample_sizes = np.array([1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7], dtype=int)
mean_estimates = np.empty(len(sample_sizes))
var_estimates = np.empty(len(sample_sizes))

for i, sample_size in enumerate(sample_sizes):
    xx_test = my_testfun.prob_input.get_sample(sample_size)
    yy_test = my_testfun(xx_test)
    mean_estimates[i] = np.mean(yy_test)
    var_estimates[i] = np.var(yy_test)

# --- Compute the error associated with the estimates
mean_estimates_errors = np.sqrt(var_estimates) / np.sqrt(np.array(sample_sizes))
var_estimates_errors = var_estimates * np.sqrt(2 / (np.array(sample_sizes) - 1))

# --- Do the plot
fig, ax_1 = plt.subplots(figsize=(6,4))

ax_1.errorbar(
    sample_sizes,
    mean_estimates,
    yerr=mean_estimates_errors,
    marker="o",
    color="#66c2a5",
    label="Mean",
)
ax_1.set_xlabel("Sample size")
ax_1.set_ylabel("Output mean estimate")
ax_1.set_xscale("log");
ax_2 = ax_1.twinx()
ax_2.errorbar(
    sample_sizes + 1,
    var_estimates,
    yerr=var_estimates_errors,
    marker="o",
    color="#fc8d62",
    label="Variance",
)
ax_2.set_ylabel("Output variance estimate")

# Add the two plots together to have a common legend
ln_1, labels_1 = ax_1.get_legend_handles_labels()
ln_2, labels_2 = ax_2.get_legend_handles_labels()
ax_2.legend(ln_1 + ln_2, labels_1 + labels_2, loc=0)

plt.grid()
fig.set_dpi(150)
../_images/flood_11_0.png

The tabulated results for each sample size is shown below.

from tabulate import tabulate

# --- Compile data row-wise
outputs = []
for (
    sample_size,
    mean_estimate,
    mean_estimate_error,
    var_estimate,
    var_estimate_error,
) in zip(
    sample_sizes,
    mean_estimates,
    mean_estimates_errors,
    var_estimates,
    var_estimates_errors,
):
    outputs += [
        [
            sample_size,
            mean_estimate,
            mean_estimate_error,
            var_estimate,
            var_estimate_error,
            "Monte-Carlo",
        ],
    ]

header_names = [
    "Sample size",
    "Mean",
    "Mean error",
    "Variance",
    "Variance error",
    "Remark",
]

tabulate(
    outputs,
    headers=header_names,
    floatfmt=(".1e", ".4e", ".4e", ".4e", ".4e", "s"),
    tablefmt="html",
    stralign="center",
    numalign="center",
)
Sample size Mean Mean error Variance Variance error Remark
1.0e+01 1.1151e+01 2.8825e-01 8.3090e-01 3.9169e-01 Monte-Carlo
1.0e+02 1.0832e+01 1.1468e-01 1.3151e+00 1.8692e-01 Monte-Carlo
1.0e+03 1.0940e+01 3.3899e-02 1.1492e+00 5.1418e-02 Monte-Carlo
1.0e+04 1.0945e+01 1.0857e-02 1.1787e+00 1.6670e-02 Monte-Carlo
1.0e+05 1.0945e+01 3.4263e-03 1.1739e+00 5.2500e-03 Monte-Carlo
1.0e+06 1.0944e+01 1.0839e-03 1.1748e+00 1.6615e-03 Monte-Carlo
1.0e+07 1.0944e+01 3.4258e-04 1.1736e+00 5.2484e-04 Monte-Carlo

References#

IL15(1,2)

Bertrand Iooss and Paul Lemaître. A review on global sensitivity analysis methods. In Uncertainty Management in Simulation-Optimization of Complex Systems, pages 101–122. Springer US, 2015. doi:10.1007/978-1-4899-7547-8_5.

BDIP17

Michaël Baudin, Anne Dutfoy, Bertrand Iooss, and Anne-Laure Popelin. OpenTURNS: an industrial software for uncertainty quantification in simulation. In Handbook of Uncertainty Quantification, pages 2001–2038. Springer International Publishing, 2017. doi:10.1007/978-3-319-12385-1_64.

LIPG13

M. Lamboni, B. Iooss, A.-L. Popelin, and F. Gamboa. Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests. Mathematics and Computers in Simulation, 87:45–54, 2013. doi:10.1016/j.matcom.2013.02.002.